Динамічна модель магнітної передачі

Автор(и)

  • Михайло Коваленко Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського", Україна https://orcid.org/0000-0002-5602-2001
  • Ігор Ткачук Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського", Україна https://orcid.org/0000-0002-5717-2458
  • Ірина Коваленко Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського", Україна https://orcid.org/0000-0003-1097-2041
  • Сергій Жук ТОВ "НТТ Енергія", Україна https://orcid.org/0009-0002-0409-5580
  • Олег Кришньов Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського", Україна https://orcid.org/0009-0008-1140-5544

DOI:

https://doi.org/10.20998/2079-3944.2024.1.06

Ключові слова:

магнітна передача, чисельне імітаційне моделювання, постійні магніти, електромеханічний перетворювач, динамічна модель

Анотація

В роботі проведено дослідження безконтактного електромеханічного перетворювача енергії із постійними магнітами, що відомий як магнітна передача. Магнітні передачі мають певні конструктивні переваги порівняно із механічними передачами, а саме: висока надійність, ефективність, менші втрати, безконтактна передача механічної потужності, відсутність витрат на технічне обслуговування, простота конструкції. Особливо актуальним є використання магнітних передач для систем перетворення низькопотенційної механічної енергії в електричну: енергія вітру, енергія води, енергія механічних коливань і т.ін. Застосування магнітних редукторів в автономних вітрових електростанціях може бути більш перспективним з економічної та технічної точок зору порівняно з традиційними механічними передачами. Розроблено чисельну імітаційну математичну модель магнітної передачі із постійними магнітами. Використання магнітної передачі, наприклад, для автономних вітроелектричних систем дозволяє підвищити надійність роботи таких установок, зменшити експлуатаційні витрати та підвищити ефективність їх роботи. В аварійних режимах роботи використання магнітної передачі дозволяє уникнути руйнувань або аварійних зупинок роботи електрообладнання. Розроблена імітаційна модель магнітної передачі враховує пульсації електромагнітного моменту через дискретну структуру магнітної передачі та зміну параметрів моделі при зміні вхідного моменту: пульсацій, втрат в магнітному осерді та постійних магнітах, зміну кута навантаження та передавального електромагнітного моменту. Особливістю розробленої моделі системи магнітної передачі є те, що зміна навантаження електроджерела електричної енергії а призводить до зміни робочої точки на механічній характеристиці ротора вітроустановки. І навпаки, при зміні параметрів вітру змінюються вихідні параметри джерела електричної енергії: потужність, напруга, струм та електромагнітний момент.

Посилання

Zheng Ma, Jingwei Ai, Yamei Yue, Kun Wang, Bin Su, A superhydrophobic magnetoelectric generator for high-performance conversion from raindrops to electricity, Nano Energy, Volume 83, 2021, 105846, ISSN 2211-2855. doi: 10.1016/j.nanoen.2021.105846.

Radwan-Pragłowska, N., Wegiel, T., Borkowski, D. (2020). Modeling of Axial Flux Permanent Magnet Generators. Energies, no. 13 (21), 5741-5745. doi: 10.3390/en13215741.

Sadullaev, N & Nematov, Sh & Sayliev, F. (2022). Evaluation of the technical parameters of the generator for efficient electricity generation in low-speed wind and water flows. Journal of Physics: Conference Series. 2388. 012142. doi: 10.1088/1742-6596/2388/1/012142.

S. Djebarri, J. F. Charpentier, F. Scuiller and M. Benbouzid, "Design and Performance Analysis of Double Stator Axial Flux PM Generator for Rim Driven Marine Current Turbines," in IEEE Journal of Oceanic Engineering, vol. 41, no. 1, pp. 50-66, Jan. 2016, doi: 10.1109/JOE.2015.2407691.

M. A. Noroozi Dehdez and J. Milimonfared, "A Novel Radial–Axial Flux Switching Permanent Magnet Generator," in IEEE Transactions on Industrial Electronics, vol. 69, no. 12, pp. 12096-12106, Dec. 2022, doi: 10.1109/TIE.2021.3128901.

F. Yu et al., "Design and Multiobjective Optimization of a Double-Stator Axial Flux SRM With Full-Pitch Winding Configuration," in IEEE Transactions on Transportation Electrification, vol. 8, no. 4, pp. 4348-4364, Dec. 2022, doi: 10.1109/TTE.2022.3173938.

J. Zhao, Y. Wang, J. Li and H. Hu, "Comparative Study on Torque Performance of Five-phase Single-Stator and Double-Stator Permanent Magnet Synchronous Motors," in CES Transactions on Electrical Machines and Systems, vol. 6, no. 1, pp. 46-52, March 2022, doi: 10.30941/CESTEMS.2022.00007.

Sun, Y. & Yu, F. & Yuan, Y. & Huang, Z. & Huang, Y. & Zhu, Z. (2019). A Hybrid Double Stator Bearingless Switched Reluctance Motor. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society. 34. 1-10. doi: 10.19595/j.cnki.1000-6753.tces.L80363.

Cendoya, M. & Talpone, Juan & Puleston, P.F. & Barrado, José Antonio & Martinez-Salamero, L. & Battaiotto, P.E. (2021). Management of a Dual-Bus AC+DC Microgrid Based on a Wind Turbine with Double Stator Induction Generator. Wseas transactions on power systems. 16. 297-307. doi: 10.37394/232016.2021.16.30.

Li, Zheng et al. ‘Design and Analysis of Underwater Power Generation Characteristics of Deflected Double-stator Switched Reluctance Generator’. 1 Jan. 2022 : 1 – 20.

Widyanto, Aji & Ariwidayat, Rahmat & Husnayaian, Faiz & Rahardjo, Amien & Utomo, A.R. & Ardita, I. (2022). Designing Air-Cored Axial Flux Permanent Magnet Generator with Double Rotor. ELKHA. 14. 46. doi: 10.26418/elkha.v14i1.53048.

Ostroverkhov, M., Chumack, V., Falchenko, M., & Kovalenko, M. (2022). Development of control algorithms for magnetoelectric generator with axial magnetic flux and double stator based on mathematical modeling. Eastern-European Journal of Enterprise Technologies, 6(5 (120), 6–17. doi: 10.15587/1729-4061.2022.267265.

V.M. Golovko, M.Ya. Ostroverkhov, M.A. Kovalenko, I.Ya. Kovalenko, D.V. Tsyplenkov Mathematical simulation of autonomous wind electric installation with magnetoelectric generator // Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2022, (5): 074 – 079. doi: 10.33271/nvngu/2022-5/074.

Setyawan, E. Y., Soleh, C., Krismanto, A. U., Sujana, I. W., Djiwo, S., & Prihatmi, T. N. (2022). Design and Performance Analysis of Double Axial Flux Permanent Magnet Generator. Trends in Sciences, 19(6), 3049. doi: 10.48048/tis.2022.3049

Prasetijo, Hari. (2022). Pengaruh Inti Stator Terhadap Performa Generator Magnet Permanen Fluks Aksial Satu Fasa. JRST (Jurnal Riset Sains dan Teknologi). 6. 165. doi: 10.30595/jrst.v6i2.13668.

Wirtayasa, Ketut & Irasari, Pudji & Kasim, Muhammad & Widiyanto, Puji & Hikmawan, Muhammad. (2019). Load characteristic analysis of a double-side internal coreless stator axial flux PMG. Journal of Mechatronics, Electrical Power, and Vehicular Technology. 10. 17. doi: 10.14203/j.mev.2019.v10.17-23.

Lee, J.-Y.; Lee, J.-H.; Nguyen, T.K. Axial-Flux Permanent-Magnet Generator Design for Hybrid Electric Propulsion Drone Applications. Energies 2021, 14, 8509. doi: 10.3390/en14248509

Tokgoz, Furkan. (2022). Analytical Modelling and Multi-Objective Optimization of Axial-Flux Permanent Magnet Machine with Various PCB Stators and Development of a GaN Switched Integrated Motor Drive PCB Motor.

Kastawan, I & Rusmana. (2020). Pengujian pembangkitan tegangan generator axial-flux permanent magnet (AFPM) tigafasa ganda. Jurnal Teknik Energi. 6. 503-509. doi: 10.35313/energi.v6i2.1713.

Asfirane, S., Hlioui, S., Amara, Y., Gabsi, M. (2019). Study of a Hybrid Excitation Synchronous Machine: Modeling and Experimental Validation. Mathematical and Computational Applications, 24 (2), 34. doi: 10.3390/mca24020034

Wardach, M., Bonislawski, M., Palka, R., Paplicki, P., Prajzendanc, P. (2019). Hybrid Excited Synchronous Machine with Wireless Supply Control System. Energies, 12 (16), 3153. doi: 10.3390/en12163153

Chumack, Vadim and Bazenov, Volodymyr and Tymoshchuk, Oksana and Kovalenko, Mykhailo and Tsyvinskyi, Serhii and Kovalenko, Iryna and Tkachuk, Ihor, Voltage stabilization of a controlled autonomous magnetoelectric generator with a magnetic shunt and permanent magnet excitation (2021). Eastern-European Journal of Enterprise Technologies, 6(5 (114), 56–62. doi: 10.15587/1729-4061.2021.246601 (ISSN 1729-3774).

##submission.downloads##

Опубліковано

2024-07-23

Як цитувати

Коваленко , М. ., Ткачук , І. ., Коваленко, І. ., Жук , С. ., & Кришньов , О. . (2024). Динамічна модель магнітної передачі. Вісник НТУ «ХПІ». Серія: Проблеми удосконалювання електричних машин I апаратiв. Теорiя I практика, (1 (11), 28–34. https://doi.org/10.20998/2079-3944.2024.1.06